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Interactions between stable spiral waves with different frequencies in cardiac tissue

Fagen Xie, Zhilin Qu, James N. Weiss, and Alan Garfinkel
Department of Medicine (Cardiology) and Department of Physiological Science,

University of California at Los Angeles School of Medicine, Los Angeles, California 90095
~Received 22 July 1998!

Using simulations of inhomogeneous cardiac tissue, we investigated interactions between multiple stable
spiral waves of different frequencies. We found that spiral waves with slower frequencies~longer periods! are
swept away by the fastest spiral wave. For a system in which two spiral waves with different frequencies are
initiated, the rate at which the slower spiral wave is terminated is proportional to the inverse of the frequency
difference. This suggests that the conjectured state of multiple stable spiral waves with distinct frequencies
cannot exist in cardiac tissue with homogeneous conduction properties.@S1063-651X~99!01702-X#

PACS number~s!: 87.10.1e, 05.45.2a, 87.17.Aa
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Reentrant excitation, in which a wave of excitation ‘‘r
enters’’ territory it has previously excited, is clinically th
most important mechanism of cardiac arrhythmias. Reent
spiral waves as a substrate of cardiac arrhythmias were
predicted in theoretical cardiac models@1–10#, and have
been observed experimentally in real cardiac tissue@11–13#.
In cardiac fibrillation, electrical activity becomes comple
and disordered. The precise nature of the activity underly
this disordered state is controversial. Winfree@14# suggested
that fibrillation could be modeled as ‘‘several pinned r
tors.’’ Studying a homogeneous excitable medium based
the FitzHugh-Nagumo model@15#, Winfree found that the
model was capable of producing stable spiral waves~a stable
spiral wave is defined as a spiral wave with a circular
trajectory and constant period throughout this paper! with
two different frequencies for the same parameter valu
However, when two spiral waves with different frequenc
were induced in the same tissue, interactions between t
always led to conversion of the slower spiral wave to
faster frequency. Lee@16# also found that a stable spira
wave and a focal excitation producing a target wave wit
different frequency could not coexist. In a recent study of
complex Ginzburg-Landau equation in a weak inhomo
neous domain@17#, a faster spiral wave was found to su
press slower ones. While these results suggest that this
nomenon may occur generically, it is not clear wheth
multiple stable spiral waves can coexist in cardiac tiss
Here we further study interactions between stable sp
waves with different frequencies in a two-dimensional inh
mogeneous excitable medium, using a more physiologic
realistic cardiac model.

Ignoring microscopic cell structure, the electrical impul
conduction in cardiac tissue can be described by the pa
differential equation

]V/]t52I ion /Cm1D¹2V, ~1!

where V is the membrane voltage~mV!, Cm51 F cm22 is
the membrane capacitance,D51 cm2/s is the diffusion coef-
ficient. I ion5I Na1I si1I K1I K11I Kp1I b is the total cellular
transmembrane ionic current density from the Luo-Ru
ventricular action potential model@18#. I Na5ḠNam

3h j(V
254.4) is the fast inward Na1 current;I si5Ḡsid f(V2Esi)
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is the slow inward Ca21 current; I K5ḠKxx̄(V277) is the
time-dependent outward K1 current; andI K1 , I Kp , and I b ,
which are solely functions ofV, are the time-independen
outward K1 current, plateauK1 current, and background
current, respectively.m, h, j, d, f, andx are gating variables
all governed by the same type of linear ordinary different
equation. For details of the equations and functions see
@18#. In our simulations we setḠNa523 mS/F, ḠK50.282
mS/F, Ḡsi50 mS/F, and j [1. These parameters yield
stable spiral wave in homogeneous tissue. We integrated
~1! in a square sheet of tissue with no-flux boundary con
tions: ]V/]xux505]V/]xux5L5]V/]yuy505]V/]yuy5L50,
whereL is the tissue length. We used a well-known opera
splitting method@19# with a variable time step~0.01–0.1 ms!
to integrate the equations numerically, with a space step
0.025 cm.

To reflect the electrophysiological heterogeneity of t
real tissue, in which there is regional variation in cyc
lengths, we modified the maximum conductance of the tim
independent K1 current I K1 , whose equation isI K1

5Ḡk1(V2Vk1). Ḡk1 was modified to be a function of loca
tion within the tissue. In the original model,Ḡk150.6047
mS/F. Here we chooseḠk1(x,y) as

Ḡk1~x,y!5H 0.6047 mS/F,
0.5140 mS/F,
0.4233 mS/F,
0.3326 mS/F,

x<L/2,y<L/2
x<L/2,y.L/2
x.L/2,y<L/2
x.L/2,y.L/2.

~2!

Thus the action potential duration of cells differs from regi
to region, since decreasingḠk1 prolongs the action potentia
duration. As a consequence, spiral waves in the four reg
have different rotation periods or frequencies.

The interaction over time of four stable spiral waves in
tiated in the four regions (a–d) of the tissue (7.5
37.5 cm2) is shown in Fig. 1~a!. Initially, the four spiral
waves coexist. Then the slowest spiral wave in thed region
is progressively invaded by the other spiral waves with fas
rotation frequencies. Eventually, the wave fronts of the ot
spiral waves collide with the tip of the slowest spiral wav
and drive it to the boundary, where it terminates. In a sim
2203 ©1999 The American Physical Society
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fashion, the slowest of the remaining spiral waves is n
pushed to the boundary and terminates, and this proce
repeated until the system is finally dominated by the fas
spiral wave~with the shortest cycle length or period! and
selects its unique frequency.

The motions of the tips of the four spiral waves are a
shown in Fig. 1~b!. As described above, the tips of all slow
spiral waves drift to the boundary and disappear. The cy
lengths in each region~measured near the four corners! ver-
sus the beat number are shown in Fig. 1~c!. The cycle length
of each slower spiral wave is almost constant until the sp
wave disappears at the boundary, at which point that reg
assumes the shorter cycle length of the fastest spiral w
The larger the cycle length difference with respect to
fastest spiral wave, the shorter the time to termination. S
pose the cycle lengths of two spiral waves areT1( f 1
51/T1) andT2( f 251/T2) (T1,T2 , f 1. f 2). Then the drift-
ing speedn of the tip of the slower spiral wave is approx
mately proportional to its difference in frequency with th
faster spiral wave@17,20#:

n}u f 12 f 2u. ~3!

If the distance from the tip of the slower wave (f 2) to the
boundary isD, then the disappearance time of the slow
wave is approximately

T'
D

n
}

D

u f 12 f 2u
. ~4!

If D is constant, then

FIG. 1. Interactions between four stable spiral waves with d
ferent frequencies in electrophysiologically inhomogeneous tis
~a! Snapshots at various times after initiation~at t50) of the four
spiral waves. White indicates depolarized tissue, and black rep
ized tissue.~b! Trajectories of the tips of the four spiral waves ov
time. ~c! The cycle lengths near the four corners (a–d) vs the beat
number. The spiral waves with slow frequencies are gradu
pushed to the boundary where they terminate. The system eve
ally selects the frequency of the fastest spiral wave.
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u f 12 f 2u
. ~5!

To test the above argument, we divided the tissue~here, the
size is 5.035.0 cm2) into two equal parts from the center lin
x5L/2. We setḠk150.6047 mS/uF in the left region, an
varied Ḡk1 in the other region. Therefore, the frequency
the spiral wave in the left region was constant, and the
quency of the spiral wave in the right region varied wi
Ḡk1 . In each simulation, we used identical initial conditio
to initiate two spiral waves, so that the distanceD in Eq. ~4!
for all initiated spiral waves is nearly constant. Figure
shows the relationship between the termination timeT versus

-
e.

r-
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FIG. 2. Plot~a! and log-log plot~b! of the termination time~T!
vs the frequency difference between two stable spiral waves.
dashed line in~b! is the theoretical line. The simulation data agr
well with the theoretical line.

FIG. 3. Interactions between four anchored spiral waves w
different frequencies in a tissue (15315 cm2) with four circular
obstacles of different sizes.~a! Snapshots at various times afte
initiation ~at t50) of the four spiral waves.~b! The cycle lengths
near the four corners (a–d) vs the beat number. Each anchore
spiral wave with slow frequency rotates several times~the plateau!
before it is entrained by the fastest spiral wave. The final state of
system is governed by the anchored spiral wave with the fas
frequency.
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the frequency difference between the two spiral waves@Fig.
2~a!, and their log-log plots@Fig. 2~b!#. As the difference
between the two frequencies becomes small, the termina
time T dramatically increases. The dashed line in Fig. 2~b! is
the theoretical line according to Eq.~5!, and shows close
agreement with data from simulation~solid dots!.

In the above analysis, the frequencies of the spiral wa
were altered by changing the properties of the cellular ac
potential model~by varyingḠk1). It is also possible to alte
spiral wave frequency by ‘‘anchoring’’ the spiral wave
defects of variable size, without changing the cellular act
potential model. To extend our analysis to this situation,
created four circular obstacles with different sizes in a
mogeneous tissue (15315 cm2). We then initiated four spi-
ral waves anchored to the four obstacles which rotated w
different frequencies~cycle lengths!. The interaction over
time between the four anchored spiral waves is shown in
3~a!. Initially four anchored spiral waves each rotated arou
their obstacles several times, then the anchored spiral w
with the fastest frequency gradually invaded the whole
sue. Instead of disappearing completely, the slower anch
spiral waves continued to rotate around part of their
stacles, but could not complete a full rotation before
wave front from the fastest spiral wave arrived, causing th
to become entrained to the fast spiral wave@15,16#. The sys-
tem, therefore, selected the cycle length of the fastest s
on
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wave. The cycle lengths near the four corners marked
a–d, respectively, versus the beat number, are shown in
3~b!, and are similar to that of Fig. 1.Again, the system goe
to a final state with a unique frequency.Since here the an
chored spiral waves just need to become entrained to
fastest frequency rather than pushed to the boundary,
system arrived at the final state much sooner than in Fig

In conclusion, we have presented simulations demons
ing that for systems containing stable spiral waves~‘‘func-
tional’’ or anchored! with different frequencies, all spira
waves with slower frequencies are swept away by the fas
spiral wave, so that the system is always dominated by
fastest spiral wave. This may be the case even in gen
excitable media, but it is especially important to cardiac t
sue. Recently, in describing cardiac fibrillation Winfree@14#
conjectured that ‘‘Several pinned rotors@anchored spiral
waves in our terminology# would collectively resemble fi-
brillation.’’ Our results suggest this hypothesis is unlikely
a medium with homogeneous conduction properties. In s
a medium, it is necessary for a spiral wave to at least beco
unstable~i.e., to enter a meandering or breakup regime! to
resemble cardiac fibrillation@8–10#.
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